Solution to Assignment 4

1. A trigonometric polynomial is $p(\cos x, \sin x)$ where $p(x, y)$ is a polynomial in two variables. Its degree is the degree of p. For instance, let $p(x, y) = x^2y - 6xy + 3y - 5$ which is of degree 3, the corresponding trigonometric polynomial is $\cos^2 x \sin x - 6 \cos x \sin x + 3 \sin x - 5$. Show that every finite trigonometric series

$$
\frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx)
$$

can be expressed as a trigonometric polynomial of degree n and the converse is true. **Solution.** Use Euler's formula $e^{kix} = \cos kx + i\sin kx$, we see

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}))
$$

$$
(\cos x + i \sin x)^k = \cos kx + i \sin kx.
$$

By binomial expansion we have

$$
\sum_{j=0}^{k} C(k,j)i^{j} \cos^{k-j} x \sin^{j} x = \cos kx + i \sin kx ,
$$

where $C(k, j)$ are the binomial coefficients. By equalling the real and imaginary parts we see cos kx and $\sin kx$ are trigonometric polynomials of degree k.

Conversely, using the substitution

$$
\cos x = \frac{e^{ix} + e^{-ix}}{2}, \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}
$$

in the trigonometric polynomial, we see that $p(\cos x, \sin x)$ can be written as a linear combination of $e^{ikx}, -n \leq k \leq n$. Thus it is a finite trigonometric series after we replace e^{ikx} by $\cos kx + i\sin kx$.

In conclusion, finite trigo series and trigo polynomials are the same thing.

2. Show that for two continuous, 2π -periodic functions f and q, they are identical if their Fourier series are the same. Hint: Show that $\int_{-\pi}^{\pi} (f - g)(x)p(x)dx = 0$ for all finite trigonometric series.

Solution. This problem is the same as to prove, a continuous function vanishing everywhere if its Fourier series is identically zero. We follow the hint. Since every finite trigo series is a linear combination of $\cos nx$ and $\sin nx$, the assumption implies

$$
\int (f - g)p(x)dx = 0
$$

for all finite trigo series. By Theorem 4.2, we can find a sequence of such functions $\{p_n\}$ such that $|f(x) - g(x) - p_n(x)| < 1/n$ for all x. It follows that

$$
\int_{-\pi}^{\pi} (f(x) - g(x))^2 dx = \int_{-\pi}^{\pi} (f(x) - g(x))(f(x) - g(x) - p_n(x))dx + \int_{-\pi}^{\pi} (f(x) - g(x))p_n(x)dx
$$

=
$$
\int_{-\pi}^{\pi} (f(x) - g(x))(f(x) - g(x) - p_n(x))dx.
$$

Therefore,

$$
\int_{-\pi}^{\pi} (f(x) - g(x))^2 dx \leq \int_{-\pi}^{\pi} |f(x) - g(x)||f(x) - g(x) - p_n(x)| dx \leq M \times \frac{1}{n} \times 2\pi \to 0,
$$

as $n \to \infty$. Here M is a bound on $\sup_x |f(x) - g(x)|$. We conclude that

$$
\int_{-\pi}^{\pi} (f - g)^2 dx = 0
$$

which forces $f - g \equiv 0$ by continuity.

Note. For completeness, let us show that if $\int_a^b F(x)dx = 0$ where F is a non-negative continuous function, then $F \equiv 0$. For, if not, $F(x_0) > 0$ at some x_0 . By continuity we may assume x_0 belongs to the interior of the interval. We can find a small $\delta > 0$ such that $[x_0 - \delta, x_0 + \delta] \subset [a, b]$ such that $F(x) \geq F(x_0)/2 > 0$ on this subinterval. But then

$$
\int_{a}^{b} F(x)dx = \int_{a}^{x_{0}-\delta} F(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} F(x)dx + \int_{x_{0}+\delta}^{b} F(x)dx
$$

\n
$$
\geq \int_{x_{0}-\delta}^{x_{0}+\delta} F(x)dx
$$

\n
$$
\leq \frac{F(x_{0})}{2} \times 2\delta
$$

\n
$$
= \delta F(x_{0}) > 0,
$$

contradiction holds. We apply this result to the previous paragraph by taking $F = (f - g)^2$.

3. Find the first twenty data for the following sequences and count how many are in the intervals $I_1 = [0, 0.25), I_2 = [0.25, 0.75)$ and $I_3 = [0.5, 1)$ respectively in each case.

(a)
$$
\langle n\sqrt{3}\rangle
$$
, (b) $\langle p_n\sqrt{2}\rangle$, (c) $\left\langle \frac{(1+\sqrt{5})^n}{2} \right\rangle$.

Here p_n is the *n*-th prime number $(p_1 = 2, p_2 = 3, \text{ etc}).$ What conclusion on their distribution can you draw? Try more data if you don't see the trend.

4. The Fibonacci numbers are given by the sequence $\{U_n\}$ satisfying $U_{n+1} = U_n + U_{n-1}$, $U_0 =$ $2, U_1 = 1$. Show that

$$
U_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n, \quad n \ge 0.
$$

Solution. By a standard induction. $n = 2$ clearly holds. Assume it holds for all $k \leq n$. We have

$$
U_{n+1} = U_n + U_{n-1} = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n + \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}
$$

= $\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} \left(1 + \frac{1+\sqrt{5}}{2}\right) + \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \left(1 + \frac{1-\sqrt{5}}{2}\right)$
= $\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}$,

done.

5. Prove that the sequence $\{\gamma_n\}$, where γ_n is the fractional part of $((1+\sqrt{5})/2)^n, n \ge 1$, is not equidistributed in $[0, 1)$.

Solution. From the previous problem we know that $((1+\sqrt{5})/2)^n \equiv -((1-\sqrt{5})/2)^n \pmod{1}$. **But** $((1 - \sqrt{5})/2)^n = (-2/(1 + \sqrt{5}))^n$ forms a sequence which is positive and negative al-
But $((1 - \sqrt{5})/2)^n = (-2/(1 + \sqrt{5}))^n$ forms a sequence which is positive and negative alternating and converging to 0, so the sequence it generates accumulates near 0 and 1 eventually.

6. (Optional) Show that for $\sigma \in (0,1)$, the sequence $\{ \langle n^{\sigma} \rangle \}$ is equidistributed in [0,1]. Hint: Prove that

$$
\sum_{n=1}^{N} e^{2\pi i k n^{\sigma}} = O(N^{\sigma}) + O(N^{1-\sigma})
$$

by noting

$$
\sum_{n=1}^{N} e^{2\pi k i n^{\sigma}} - \int_{1}^{N} e^{2\pi i k x^{\sigma}} dx = O\left(\sum_{n=1}^{N} n^{\sigma - 1}\right).
$$

Solution. $^{2\pi kn^{\sigma}} = \cos(2\pi kn^{\sigma}) + i\sin(2\pi kn^{\sigma})$, we consider the real and imaginary parts separately. On each $[n, n + 1]$, by the mean-value property of the integral we have $\int_{n}^{n+1} \cos(2\pi nx^{\sigma}) dx = \cos(2\pi ny^{\sigma})$ for some $y \in [n, n+1]$. Therefore, by applying the mean-value theorem

$$
\cos(2\pi k n^{\sigma}) - \int_{n}^{n+1} \cos(2\pi k x^{\sigma}) dx = \cos(2\pi k n^{\sigma}) - \cos(2\pi k y^{\sigma}) = -2\pi k \sin(2\pi k c^{\sigma}) \sigma c^{\sigma-1} (n-y)
$$

for some mean value c lying between y and n . We have

$$
\left|\cos(2\pi k n^{\sigma}) - \int_{n}^{n+1} \cos(2\pi k x^{\sigma}) dx\right| \leq \left|(-2\pi k \sin(2\pi k c^{\sigma})) \sigma c^{\sigma-1} (n-y)\right| \leq C n^{\sigma-1}.
$$

Summing up, we have

$$
\left|\sum_{n=1}^N \cos(2\pi k n^{\sigma}) - \int_1^N \cos(2\pi k x^{\sigma}) dx\right| \leq C \sum_{n=1}^N n^{\sigma-1}.
$$

Similarly we can treat the imaginary part.

Now, by the integral test,

$$
\sum_{n=1}^{N} n^{\sigma-1} \ge \int_{1}^{N+1} x^{\sigma-1} dx = \sigma^{-1}((N+1)^{\sigma} - 1) = O(N^{\sigma}),
$$

and

$$
\sum_{n=2}^{N} n^{\sigma-1} \le \int_{1}^{N+1} x^{\sigma-1} dx = O(N^{\sigma}).
$$

It follows that

$$
\sum_{n=1}^{N} n^{\sigma-1} = O(N^{\sigma}).
$$

On the other hand,

$$
\int_1^N \cos(2\pi kx^{\sigma})dx = \sigma^{-1} \int_1^{N^{\sigma}} y^{1/\sigma - 1} \cos(2\pi k y) dy.
$$

We write

$$
\int_1^{N^{\sigma}} y^{1/\sigma - 1} \cos(2\pi k y) dy = \sum_{j=k}^{M} \int_{j/k}^{(j+1)/k} y^{1/\sigma - 1} \cos(2\pi k y) dy = \sum_{j=k}^{M} \int_0^{1/k} \left(z + \frac{j}{k} \right)^{1/\sigma - 1} \cos(2\pi k z) dz,
$$

where M is the number so that $(M+1)/k$ is closest to N^{σ} . For each j,

$$
\int_0^{1/k} \left(z + \frac{j}{k} \right)^{1/\sigma - 1} \cos(2\pi k z) dz = \left(\int_0^{1/2k} + \int_{1/2k}^{1/k} \right) \left(z + \frac{j}{k} \right)^{1/\sigma - 1} \cos(2\pi k z) dz
$$

=
$$
\int_0^{1/2k} \left[\left(z + \frac{j}{k} \right)^{1/\sigma - 1} - \left(z + \frac{j}{k} + \frac{1}{2k} \right)^{1/\sigma - 1} \right] \cos(2\pi k z) dz.
$$

By the mean-value theorem,

$$
\left(z + \frac{j}{k}\right)^{1/\sigma - 1} - \left(z + \frac{j}{k} + \frac{1}{2k}\right)^{1/\sigma - 1} = \left(\frac{1}{\sigma} - 1\right)\left(z + \frac{j}{k} + c\right)^{\frac{1}{\sigma} - 2} \frac{1}{2k}, \ c \in \left(0, \frac{1}{2k}\right) .
$$

Using this we see that

$$
\int_0^{1/k} \left(z + \frac{j}{k}\right)^{1/\sigma - 1} \cos(2\pi kz) dz
$$

is like

$$
C\int_0^{j/k}\left(z+\frac{j}{k}\right)^{\frac{1}{\sigma}-2}dz.
$$

Therefore,

$$
\left| \int_{1}^{N^{\sigma}} y^{1/\sigma - 1} \cos(2\pi k y) dy \right| = \left| \sum_{j=k}^{M} \int_{0}^{1/k} \left(z + \frac{j}{k} \right)^{1/\sigma - 1} \cos(2\pi k z) dz \right|
$$

$$
\leq \left| C \sum_{j=k}^{M} \int_{0}^{1/k} \left(z + \frac{j}{k} \right)^{\frac{1}{\sigma} - 2} dz \right|
$$

$$
\leq C \int_{1}^{N^{\sigma}} y^{\frac{1}{\sigma} - 2} dy = C N^{1 - \sigma} .
$$

We conclude that

$$
\sum_{n=1}^{N} e^{2\pi i k n^{\sigma}} = O(N^{\sigma}) + O(N^{1-\sigma})
$$

holds. Finally, the result comes from Weyl's criterion as $\sigma \in (0,1)$. I did not realize that the solution is too long. You may wish to skip it.